cv

a quick overview of some professional experiences. full CV available upon request

Overview

Name Lucius EJ Bynum
Position PhD Candidate, NYU Center for Data Science
Microsoft Research PhD Fellow
Website luciusbynum.com

Education

Funding and Awards

Experience

Teaching and Mentoring

  • 2022-Present

    USA + Ukraine

    Research Advisor, R/AI Research Program
    NYU Center for Responsible AI + Ukrainian Catholic University + National University of Kyiv-Mohyla Academy
  • Spring 2023

    NYC, New York

    Teaching Assistant + Section Leader, Responsible Data Science
    New York University
  • Spring 2022

    NYC, New York

    Instructor, We Are AI
    New York University + Queens Public Library
  • 2017-2018

    Claremont, CA

    Operations Research Mathematics Grader
    Harvey Mudd College
  • 2015-2018

    Claremont, CA

    Writing Center Consultant
    Harvey Mudd College
  • 2016-2017

    Claremont, CA

    Academic Excellence Mathematics Tutor
    Harvey Mudd College
  • 2016-2017

    Claremont, CA

    Student Mentor
    Harvey Mudd College

Publications

  • For more info, see my publications page.
    - Loftus, J.R.; Bynum, L.E.J.; and Hansen, S. Causal Dependence Plots. Advances in Neural Information Processing Systems (NeurIPS 2024).
    - Bynum, L.E.J.; Loftus, J.R.; and Stoyanovich, J. A New Paradigm for Counterfactual Reasoning in Fairness and Recourse. Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI 2024).
    - Bynum, L.E.J., Loftus, J.R., & Stoyanovich, J. Counterfactuals for the Future. Proceedings of the AAAI Conference on Artificial Intelligence (AAAI 2023).
    - Bell, A.; Bynum, L.E.J.; Drushchak, N.; Zakharchenko, T.; Rosenblatt, L.; & Stoyanovich, J. The Possibility of Fairness: Revisiting the Impossibility Theorem in Practice. Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency (FAccT 2023).
    - Bynum, L.E.J.; Arif Khan, F.; Konopatska, O.; Loftus, J.R.; and Stoyanovich, J. An Interactive Introduction to Causal Inference. VISxAI: Workshop on Visualization for AI Explainability (VISxAI 2022).
    - Bynum, L.E.J.; Loftus, J.R.; and Stoyanovich, J. Disaggregated Interventions to Reduce Inequality. Equity and Access in Algorithms, Mechanisms, and Optimization (EAAMO 2021).
    - Bynum, L.E.J.; Doster, T.; Emerson, T.H.; and Kvinge, H. Rotational Equivariance for Object Classification Using xView. 2020 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2020). Note: alphabetical order.